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Integer Arithmetic
Integer Arithmetics: ℤ = {…, −3, −2, −1, 0, 1, 2, 3, …}

Addition (+), For all 𝑎, 𝑏, 𝑐 ∈ ℤ Multiplication (⋅), ∀𝑎, 𝑏, 𝑐 ∈ ℤ
● 𝑎 + 𝑏 = 𝑐 ∈ ℤ.
● (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
● ∃0 ∈ ℤ, 𝑎 + 0 = 0 + 𝑎 = 𝑎
● ∃(−𝑎) ∈ ℤ, 𝑎 + (−𝑎) = 0

● 𝑎 ⋅ 𝑏 = 𝑐 ∈ ℤ.
● (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐)
● ∃1 ∈ ℤ, 𝑎 ⋅ 1 = 1 ⋅ 𝑎 = 𝑎

● 𝑎 + 𝑏 = 𝑏 + 𝑎 ● 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎

☛ (ℤ, +) is an Abelian group.

☛ (ℤ, ⋅) is a semi-group with (multiplicative) identity 1.
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Group
Consider a set G and an operation ⋆ : 𝐺 × 𝐺 → 𝐺 defined on G. Then (𝐺, ⋆) is
called a group if the following hold:

1. Closure of 𝐺 under ⋆: ∀𝑥, 𝑦 ∈ 𝐺, 𝑥 ⋆ 𝑦 ∈ 𝐺.
2. Associativity: ∀𝑥, 𝑦 , 𝑧 ∈ 𝐺, (𝑥 ⋆ 𝑦) ⋆ 𝑧 = 𝑥 ⋆ (𝑦 ⋆ 𝑧)
3. Identity element: ∃𝑒 ∈ 𝐺 : 𝑥 ⋆ 𝑒 = 𝑒 ⋆ 𝑥 = 𝑥∀𝑥 ∈ 𝐺.
4. Inverse element: ∀𝑥 ∈ 𝐺, ∃𝑦 ∈ 𝐺 : 𝑥 ⋆ 𝑦 = 𝑦 ⋆ 𝑥 = 𝑒, where 𝑒 is the

identity element.

If additionally ∀𝑥, 𝑦 ∈ 𝐺, 𝑥 ⋆ 𝑦 = 𝑦 ⋆ 𝑥 , then (𝐺, ⋆) is called an Abelian
group (or a commutative group).

Examples: (ℤ, +), (ℚ∗, ⋅) are groups. (ℤ, ⋅) is not a group (why?).
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Clock Arithmetics
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Consider the set ℤ12 = {1, 2, 3, …, 11, 0(= 12)}.

☛ Define a binary operation ⊕ : ℤ12 × ℤ12 → ℤ12, such that

𝑎 ⊕ 𝑏 = 𝑏 hours after 𝑎 o'clock

☛ Is (ℤ12, ⊕) a group?
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Clock Arithmetics..
ℤ12 = {0, 1, 2, 3, …, 11}.

For 𝑎, 𝑏 ∈ ℤ12, define

𝑎 ⊕ 𝑏 = remainder when (𝑎 + 𝑏) is divided by 12
≡ (𝑎 + 𝑏) mod 12. (Notation)

Similarly,

𝑎 ⊙ 𝑏 = remainder when (𝑎 ⋅ 𝑏) is divided by 12
≡ (𝑎 ⋅ 𝑏) mod 12. (Recall the Notation)

Question: Does (ℤ12, ⊕) form a group?

What about (ℤ12, ⊙)?
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Modular Arithmetic
Let 𝑛 ∈ ℕ. Define,

ℤ𝑛 = {0, 1, 2, 3, …, 𝑛 − 1}.

For 𝑎, 𝑏 ∈ ℤ𝑛, define

𝑎 ⊕ 𝑏 ≔ (𝑎 + 𝑏) mod 𝑛
𝑎 ⊙ 𝑏 ≔ (𝑎 ⋅ 𝑏) mod 𝑛.

Exercise:
1. Show that (ℤ𝑛, ⊕) is an Abelian group.
2. Show that (ℤ𝑛, ⊙) is a semi-group. Note that a set together with a binary

operation is called a semi group if the binary operation is associative.

Exercise: If 𝑝 ∈ ℕ is a prime, then ((ℤ𝑝)
∗
, ⊙) is an Abelian group.
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Proof:

(ℤ𝑝)
∗

= {1, 2, …, 𝑝 − 1}

For 𝑎, 𝑏 ∈ (ℤ𝑝)
∗
, we have

1. 𝑎 ⊙ 𝑏 = 𝑎 ⋅ 𝑏 (mod 𝑝) ∈ (ℤ𝑝)
∗
.

2. (𝑎 ⊙ 𝑏) ⊙ 𝑐 = 𝑎 ⋅ 𝑏 (mod 𝑝) ⊙ 𝑐
= (𝑎𝑏 + 𝑝𝑡) ⊙ 𝑐 = (𝑎𝑏 + 𝑝𝑡)𝑐 (mod 𝑝)
= 𝑎𝑏𝑐 (mod 𝑝) = 𝑎 ⊙ (𝑏 ⊙ 𝑐)

3. 1 is the identity element.
4. For 𝑎 ∈ (ℤ𝑝)

∗
, gcd(𝑎, 𝑝) = 1 ⇒ 𝑎𝑥 + 𝑝𝑦 ≡ 1 mod 𝑝, hence 𝑎−1 = 𝑥 mod 𝑝.

□
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Exercise: Find 1
5  in (ℤ∗

17, ⊙).

Solution:

As 17 is a prime, gcd(5, 17) = 1. In fact, we compute the GCD as follows:

17 = 5 × 3 + 2
5 = 2 × 2 + 1
2 = 1 × 2 + 0.

(1)

Thus,

1 = 5 − 2 × 2
= 5 − (17 − 5 × 3) × 2
= 5 × 7 + 17 × (−2)

Hence 1 = 5 × 7 mod 17, i.e., 5 ⊙ 7 = 1 and so 1
7 = 5 in ℤ17.
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Order of an element in Finite Groups
We have now seen some examples of finite groups. Let (𝐺, ⋅) be a group with
|𝐺| = 𝑛 and 1 ∈ 𝐺 is the identity element.

• The number of elements in the finite set 𝐺 is called the order of the group
(𝐺, ⋅). We represent it using 𝑜(𝐺).

• For 𝑔 ∈ 𝐺, we can define the order 𝑜(𝑔) of the element 𝑔 in the group (𝐺, ⋅)
as the smallest positive integer ℓ such that

𝑔ℓ ≔ 𝑔 ⋅ 𝑔 ⋅ 𝑔……𝑔 ⋅ 𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℓ times

= 1.

and we write 𝑜(𝑔) = ℓ. (Why does it even exit?)
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Consider the set 𝐺′ = {𝑔 𝑖 : 1 ≤ 𝑖 ≤ 𝑜(𝐺)}

• Note that 𝐺′ ⊂ 𝐺.

• If all the elements in 𝐺′ are distinct, 𝐺′ = 𝐺 and 1 ∈ 𝐺′ and hence there is
a 𝑡  such that 𝑔 𝑡 = 1.

• If the elements in 𝐺′ are not distinct, there exists 𝑠 > 𝑡 ∈ ℕ such that 𝑔𝑠 =
𝑔 𝑡  implying 𝑔𝑠−𝑡 = 1.

• The smallest exponent ℓ such that 𝑔ℓ = 1 is called the order of 𝑔.

𝑜(𝑔) = inf{ℓ : 𝑔ℓ = 1, ℓ ∈ ℕ}

Remark: Such an ℓ always exists in finite groups. In infinite groups such an ℓ
may not exist, in that case, order of 𝑔 is infinite.
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Cyclic Group
Let (𝐺, ⋅) be finite group with 𝑜(𝐺) = 𝑛. For 𝑔 ∈ 𝐺, define

⟨𝑔⟩ ≔ {𝑔 𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ⊂ 𝐺.
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Cyclic Group
Let (𝐺, ⋅) be finite group with 𝑜(𝐺) = 𝑛. For 𝑔 ∈ 𝐺, define

⟨𝑔⟩ ≔ {𝑔 𝑖 | 1 ≤ 𝑖 ≤ 𝑛} ⊂ 𝐺.

Exercise: Show that (⟨𝑔⟩, ⋅) is group. The group (⟨𝑔⟩, ⋅) is called a cyclic
subgroup of the group (𝐺, ⋅) generated by an element 𝑔 of 𝐺.

Remark: The cyclic subgroup generated by an element 𝑔 ∈ 𝐺, can be
defined for infinite groups as well.

⟨𝑔⟩ ≔ {𝑔 𝑖 | 𝑖 ∈ ℤ} ⊂ 𝐺.
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Example. Consider the set

(ℤ13)∗ = {1, 2, …, 12}

and a binary operation ⊙, which is multiplication modulo 13.

⟨4⟩ = {4, 3, 12, 9, 10, 1}
⟨5⟩ = {5, 12, 8, 1}
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Cyclic Group..
Definition: A group (𝐺, ⋅) is said to be cyclic group if there exists a 𝑔 ∈ 𝐺
such that 𝐺 = ⟨𝑔⟩.

Example. Consider the set (ℤ13)∗ = {1, 2, …, 12} and a binary operation ⊙,
which is multiplication modulo 13.

⟨2⟩ = {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, }

Thus (ℤ13)∗ is a cyclic group generated by 2.

☛ In a finite cyclic group 𝐺 = ⟨𝑔⟩, every element of 𝐺 can be written as
some power of the generator 𝑔.

☛ 𝑔𝑜(𝐺) = 1 in a finite cyclic group 𝐺 = ⟨𝑔⟩. (Proof?)

Exercise: Show that 𝑔𝑜(𝐺) = 1 in a finite cyclic group 𝐺 = ⟨𝑔⟩..
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Discrete Logarithm Problem
Definition: Let (𝐺, ⋅) = ⟨𝑔⟩ be a finite cyclic group of order 𝑛, i.e. 𝑜(𝐺) = 𝑛,
and ℎ ∈ 𝐺. We can write ℎ as

ℎ = 𝑔𝑒 = 𝑔 ⋅ 𝑔 ⋅ 𝑔……𝑔 ⋅ 𝑔⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒 times

,

for some 𝑒 ∈ ℤ𝑛. We call 𝑒 the discrete logarithm of ℎ to the base 𝑔 and

write 𝑒 = log𝑔 ℎ.

Remark: We also use the notation ℤ𝑛 for ℤ𝑛, use simple ⋅ to represent the
binary op ⊙ and often write 𝑎𝑏 to mean 𝑎 ⋅ 𝑏.

Exercise: In the group (ℤ∗
13, ⋅), calculate log2 5?
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Example of a cyclic group

Theorem: If 𝑝 ∈ ℤ+ is a prime, the (ℤ∗
𝑝 , ⋅) is a cyclic group of order

(𝑝 − 1).
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Example of a cyclic group

Theorem: If 𝑝 ∈ ℤ+ is a prime, the (ℤ∗
𝑝 , ⋅) is a cyclic group of order

(𝑝 − 1).

Let

𝑝 = 12462036678171878406583504460810659043482037465167
88057548187888832896668011882108550360395702725087
47509864768438458621054865537970253930571891217684
31828636284694840530161441643046806687569941524699
3185704183030512549594371372159029285303,

(ℤ⋆
𝑝 , ⋅) = ⟨5⟩
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Finte Ring and Finite Field
• Recall, (ℤ, +) is an Abelian group and (ℤ⋆, ⋅) is a semi-group.

‣ Multiplication can be performed in ℤ, but division (inverse of
multiplication) is not always possible, i.e., when we divide an integer by
another, the result is not always an integer.

‣ In other words 1
𝑎 ∉ ℤ ∀𝑎 ∈ ℤ, however this is true for rationals.

• The structure (ℚ, +, ⋅), where addition, inverse of addition (subtraction),
multiplication and division( inverse of multiplication), all can be
performed, and ⋅ is distributive over +, is termed a Field. Similarly, (ℤ, +, ⋅)
is an example of a Ring.

• More precise mathematical definitions of Ring and Field are presented
below.
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Definition: (Ring)
A ring (𝑅, +, ⋅) is a set 𝑅, which is CLOSED under two operations + and ⋅,
and satisfying the following properties:
• (𝑅, +) is an Abelian group.
• The binary operation ⋅ is associative in 𝑅 i.e., (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅ (𝑏 ⋅ 𝑐) for all

𝑎, 𝑏, 𝑐 ∈ 𝑅
• The operation ⋅ is distributive over + i.e.,

(𝑎 + 𝑏) ⋅ 𝑐 = (𝑎 ⋅ 𝑐) + (𝑏 ⋅ 𝑐)
𝑎 ⋅ (𝑏 + 𝑐) = (𝑎 ⋅ 𝑏) + (𝑏 ⋅ 𝑐) ∀𝑎, 𝑏, 𝑐 ∈ ℤ.

• (ℤ, +, ⋅), (ℚ, +, ⋅) and (ℂ, +, ⋅) are very common examples of a Ring.

• The set of all 𝑛 × 𝑛 matrices with entries from a ring (or even a field) forms
a ring under matrix addition and matrix multiplication.

• (ℤ𝑛, ⊕, ⊙) forms a ring as well. (prove it)
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Field
Definition: (Field)
A field (𝐹 , +, ⋅) is a ring with multiplicative identity, where every non-zero
element of 𝐹  has a multiplicative inverse.

• (ℚ, +, ⋅), (ℝ, +, ⋅) and (ℂ, +, ⋅) are fields.

• (ℤ, +, ⋅) is not a field and so is (ℤ𝑛, ⊕, ⊙).

Question: Is there a field with finitely many elements?
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Finite Fields
• (ℤ𝑛, ⊕, ⊙), where 𝑝 is a prime, is a field.

‣ Compute 1
7 , i.e., 7−1 in (ℤ7, ⊕, ⊙). What is the value of 3

7  in ℤ7?

Example: Let 𝐹4 = {0, 1, 𝑥, 1 + 𝑥}, with two binary operations + and ⋅,
defined as follows:

+ 𝑎 𝑏 𝑐 𝑑
𝑎 𝑎 𝑏 𝑐 𝑑
𝑏 𝑏 𝑎 𝑑 𝑐
𝑐 𝑐 𝑑 𝑎 𝑏
𝑑 𝑑 𝑐 𝑏 𝑎

⋅ 𝑎 𝑏 𝑐 𝑑
𝑎 𝑎 𝑎 𝑎 𝑎
𝑏 𝑎 𝑏 𝑐 𝑑
𝑐 𝑎 𝑐 𝑑 𝑐
𝑑 𝑎 𝑑 𝑐 𝑏

Show that (𝐹4, +, ⋅) is a field. Note that, it has 4 elements.

Question: Is there a field consisting of 6 elements? Justify your answer.
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Finite Field of Order 𝑝𝑛

• Let 𝐹𝑝  be a finite field (ℤ𝑝 , +, ⋅) and 𝑓 (𝑥) ∈ 𝐹𝑝[𝑥] be a monic irreducible
polynomial of degree 𝑛.

• Let 𝐹𝑝𝑛 = {𝑔(𝑥) ∈ 𝐹𝑝[𝑥] : deg(𝑔(𝑥)) ≤ 𝑛 − 1}, define binary operations ⊕
and ⊙ on 𝐹𝑝𝑛  as follows:

𝑔1(𝑥) ⊕ 𝑔2(𝑥) = 𝑔1(𝑥) + 𝑔2(𝑥) mod 𝑓 (𝑥)
𝑔1(𝑥) ⊙ 𝑔2(𝑥) = 𝑔1(𝑥) ⋅ 𝑔2(𝑥) mod 𝑓 (𝑥)

• (𝐹𝑝𝑛 , ⊕, ⊙), as described above forms a finite field of order 𝑝𝑛.

Remarks:
• The number of elements in any finite field is equal to 𝑝𝑛 for some prime

𝑝 and positive integer 𝑛.
• Two finite fields of the same order are isomorphic, i.e., they behave in

the same fashion modulo a mapping of elements.
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Example: Let 𝐹4 ≔ 𝐹2[𝑥]
⟨𝑥2+𝑥+1⟩ = {0, 1, 𝑥, 1 + 𝑥}, with two binary

operations + and ⋅, defined modulo 𝑥2 + 𝑥 + 1 as follows:

+ 0 1 𝑥 1 + 𝑥
0 0 1 𝑥 1 + 𝑥
1 1 0 1 + 𝑥 𝑥
𝑥 𝑥 𝑥 + 1 0 1

1 + 𝑥 1 + 𝑥 𝑥 1 0

⋅ 0 1 𝑥 1 + 𝑥
0 0 0 0 0
1 0 1 𝑥 1 + 𝑥
𝑥 0 𝑥 1 + 𝑥 𝑥

1 + 𝑥 0 1 + 𝑥 𝑥 1
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